The following papers cover some of the background to Probabilistic AI.
The importance of probabilistic AI
Probabilistic machine learning and artificial intelligence Z. Ghahramani (2015) Nature 521, 452-459
Position Paper: Bayesian Deep Learning in the Age of Large-Scale AI T. Papamarkou et al. (2024) arXiv:2402.00809
Scalable sampling and generalised Bayesian ideas
Scalable Monte Carlo for Bayesian Learning P Fearnhead, C Nemeth, CJ Oates and C Sherlock arXiv:2407.12751. A book length introduction to recent advances in Monte Carlo.
Stochastic gradient Markov chain Monte Carlo. P. Fearnhead and C. Nemeth (2019) Journal of the American Statistical Association 433, 533-550
Martingale posterior distribution. E. Fong, C. Holmes and S. Walker (2023) Journal of the Royal Statistical Association, Series B 85, 1358-1391
Stochastic normalising flows. H. Wu, J. Kohler and F. Noe (2020) NeurIPS 34
Dynamical systems view of AI
Bayesian Learning for Neural Networks. R. Neal (2012) Springer
Gaussian process behaviour in wide deep neural networks A. Matthews, M. Rowland, J. Hiron, R. Turner and Z. Ghahramani (2018) arXiv:1804.11271
Neural Processes. M. Garnelo et al. (2018) arXiv:1807.01622
Deep limits of residual neural networks M. Thorpe and Y. van Gennip. (2018) arXiv:1810.11741
Mathematical underpinnings of generative models
Denoising Diffusion Probabilistic Models in Six Simple Steps. R. Turner et al. (2024) arXiv:2402.04384
Diffusion Schrödinger Bridges for Bayesian Computation Jeremy Heng, Valentin De Bortoli, Arnaud Doucet (2024) Statistical Science 39, 90-99
From Denoising Diffusions to Denoising Markov Models. J Benton et al. (2022) arXiv:2211.03595
Structure-constrained and informed AI
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. M. Raissi, P Perdikaris and G Karniadakis (2019) Journal of Computational Physics 378, 686-707
Testing the manifold hypothesis C. Fefferman, S. Mitter and H. Narayanan (2016), Journal of the American Mathematical Society 29, 983-1049
Probabilistic and Uncertainty-aware AI
Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian inverse problems. A. Teckentrup SIAM-ASA JUQ 8, 1310-1337